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Extension of the Dirac identity 
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77553, USA 

Received 15 January 1980 

Abstract. A constructive proof is presented to show that, for any permutation P on spin 
space, P +  P-' can be expressed as a linear combination of spin-operator products Il s,. s, 
with all the particle indices m, n in a product distinct. 

1. Introduction 

In many fermion systems the exchange of the particle spin is of importance (Dirac 1929) 
as in atomic (Van Vleck and Sherman 1935, Corson 1951, Harter 1971), nuclear 
(Harter 1971, Biedenharn 1963), and solid state (Herring 1963, Klein and Seitz 1973) 
problems. Then the Dirac identity (see these references and also Schrodinger (1941), 
Corson (1948), Lezuo (1972) and Partensky (1972) for extensions in other directions) 
relating spin operators and transpositions, i.e., two-particle permutations, is of use. 
Generalisations (See the references already cited) of this original result can describe 
effective m-body interactions with m 2 3. One such case (Herring 1963, Klein and Seitz 
1973) arises in the higher orders of degenerate perturbation expansions for the 
Heisenberg exchange interaction models; indeed, the extensions of the Dirac identity 
considered here are applicable to such a problem where the full Schrodinger Hamil- 
tonian is spin-free and time-reversal invariant. 

We are concerned with a spin space composed from N-fold tensor products of 
two-state spinors 

Y ~ : { I C T ~ ~ C T ~ ~ . . . O C T ~ ) ; ( T ~ = ( Y  o r @ ,  i = l  t o N ) .  (1.1) 
Permutations P in the symmetric group YN act on the particle indices, and we denote a 
cyclic permutation carrying n to 1 and i to i + 1, i = 1 to n - 1, by (12 . . . n ) .  Then the 
Dirac identity relates a transposition to the usual spin operators, as si for particle i, 

(1.2) 1 (12) = 2Sl. s2+2 

which is easily proven by comparing the actions of the left- and right-hand sides on the 
basis kets of y2. Similarly, one can establish 

(1 23) + (1 32) = (1 2) + (23) + (3 1) - 1, (1.3) 

a result which is (Herring 1963, Klein and Seitz 1973) only slightly less well known, and 
which expresses the sum (123)+(132) of permutations in terms of spin operators, if 
(1.2) is substituted in for the transpositions on the right of (1.3), Here extensions of 
these relations involving more general permutations are to be established. 
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We let 

x+ XpP 
P 

(1.4) 

denote an element of the group algebra d N  of YN, with the xp being scalars, P E  9,. If 
all the x p  are real, then X is real. We define a type of average 

( X )  = + (XpP + X W )  (1.5) 
P 

termed the Hermitian part of X .  Then in theorem 1 it is shown that for a realX E dN, its 
Hermitian part can be expressed as a (real) linear combination of involutary (i.e., 
self-inverse) permutations. Since a transposition is the only cycle which is its own 
inverse, we see that the set 9, of involutary permutations consists of the identity and 
those T E .Y” which are products of disjoint transpositions. Thus using (1.2) every ( X ) ,  
for X E dN a real X, is expressed in terms of spin operators. The method of proof is 
largely constructive and is utilised to give explicit expressions for the ( P )  with P a 
representative of each class of 9,. A second theorem establishes the situations under 
which 9N forms a basis to the real part of (dN).  

2. Setting up the proof 

The method of proof of the following three lemmas and theorem 1 are all of a similar 
type. First we note the identity 

( P  + TPT-’) = ( T ( T P  + PT))  P E  xv, T E 9 N .  

Next suppose that there is a sequence 

71, 7 2 ,  * * * 9 Tz 

of an odd number z of involutary permutations and corresponding sequence 

Po=P p i e r . p .  I /-1ri j = 1  to m , P E Y N  

such that 

(PZ) = (P) .  
Then, utilising (2.1), we find 

z z 

( P ) = i  1 ( - l ) ’ (Pj-~+Pj)=; c (-1)’(Tj(TjPj-1 +pj-lTj)). 
j=1  j = l  

In the following we find that with the appropriate choices for the ri, i = 1 to z ,  and Po = P 
the identity of (2.5) yields recurrence relations for ( P )  in terms of ‘simpler’ (a). Thus 
the overall proof will be inductive starting with the results of (1.2) and (1.3) and 
expressing more and more ‘complicated’ ( P )  in terms of ‘simpler’ (a) already known to 
be expressible in terms of r E 9~. When this is done we say P is reducible, and the 
heirarchical ordering for complexity is indicated implicitly in the proofs. Also we shall 
use, without making any special note, the fact that if T E 9 N  and P E 9 N  are disjoint, then 
(TP) = T(P). 

Lemma 1. If P E  9 6 ,  then ( P )  is reducible. 
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Proof, Equation (1.3) has established the result if P is a three-cycle. The remaining four 
non-trivial classes are considered as separate cases. 

First case, P = (1234). We choose a sequence 

7 1  = (34), T2 = (24), T3 = (14) 

for which z = 3 is odd and 

Po= (1234), Pi = (1243), Pz= (1423), P s =  (1234)zP.  

Then (2.5) becomes 

(( 1234)) = ;( (34)( (1 23) + (1 24)) - (24)( (3 14) + (3 12)) + (1 4)( (1 23) + (423))). 

Using (1.3) the inner brackets over three-cycles may be converted to scalars and 
transpositions, which in turn are multiplied by a ri, whence (1.3) may again be utilised. 
For example, in the first part of the above equation 

((34)((123))) = ((34){(12) + (23) + (13) - 11) 
=((12)(34)+(243)+(143)-(34)) 

= (12)(34)+;{(24)+(43)+(32)+(14)+(43)+(31)-2}-(34). 

Thus ((1234)) is reduced to a sum over scalars, transpositions and disjoint products of 
two transpositions. 

Second case, P = (12345). We choose a sequence 

T I  = (23)(45), ~2(25)(14), 73 = (12)(34) 

for which z = 3 is odd and 

Po=(12345), P,=(13254), P2=(43521), P3=(34512)=P.  

Then (2.5) becomes 

((12345)) =&(23)(45)((135) + (124))- (25)(14)((324) + (135)) 

+(12)(34)((135) +(245))). 

Here the three-cycles in the inner brackets are reducible to scalars and transpositions, 
which when multiplied by the T~ yield three- or four-cycles, which are in their turn 
reducible. Thus (12345) is reducible. 

Third case, P = (123456). We choose a sequence 

7 1  = (56), 7 2  (46), T3 = (36), 7 4  = (26), 75 = (16) 

in which case z = 5 is odd, and (2.5) becomes 

(( 12345 6)) = ;( ( 5  6)( (1 2346) + (1 2345)) - (46)( (1 23 65) + (1 2345)) 

+ (36)((12645) + (12345))- (26)((16345) + (12345)) 

+ (16)((62345) + (12345))). 

Here the five-cycles in the inner brackets are reduced, the results multiplied by the n, 
and these resultants reduced. 

Fourth case, P = (123)(456). We choose the sequence 

TI  = (14), 72 = (25), 7 3  = (36) 
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in which case z = 3 is odd and (2.5) may be applied. The (rjPj-l +Pj- lq)  involve 
six-cycles which are reduced, then multiplied by T ~ ,  and reduction via earlier cases again 
carried out. 

Lemma 2. ((12 . . . n ) )  is reducible for all n. 

Proof. This lemma is already established for all n G 6. We now proceed by induction 
presuming the lemma is true for all n < N, and establish it for ((123 . . . N ) ) .  We choose 
a sequence 

T I  = (23)(45), 7 2  = (23), 7 3  = (45). 

Then z = 3 is odd, and (2.5) becomes 

(( 12345 . . .)) = $( (23)(45)( (1 3 5 , . .) + (1 24 . , ,)) - (23)( (1 254 . . .) + (1  345 , . .)) 
+(45)((1234. ,  . ) + ( 1 2 3 5 . .  .))) 

where . . . here denotes the sequence from 6 up to N. Here the (N-2) -  and 
( N  - 1)-cycles are reducible via the induction hypothesis. Multiplying these reduced 
forms by the T~ we find two-cycles, three-cycles, four-cycles, products of two disjoint 
three-cycles, and disjoint products of all these with T E 9jN. But using lemma 1 all these 
are reducible. 

Lemma 3. If P is a product of disjoint three-cycles, then ( P )  is reducible. 

Proof. Let P be an m-fold product of three-cycles 

m 

i = l  
P= n (3 i -2 ,3 i -1 ,  3i) 

and choose a sequence 

7 1  = (1 ,4 ,7 ,  . . . , 3 m  -2), TZ = (2, 5 , 8 , .  . . , 3m - l), T~ = (3 ,6 ,9 ,  . . . ,3m).  

Applying (2.5), we find that (3m)-cycles arise in the inner brackets. These are reducible 
via lemma 2; then multiplication by T~ yields various (a) reduced by lemma 1. 

3. The main results 

The technique and lemmas of the preceding section may be utilised to show the 
following theorem, 

Theorem 1. For any P E  YN, ( P )  is a linear combination of involutary permutations 
of 9jN. 

Proof. Starting from the results of the lemmas we proceed by induction, presuming that 
the theorem is true for all P E YN with the total number K of indices in disjoint m-cycles 
of m b 3 such that K < M ;  then we establish the theorem for the M-index case. We 
presume P is of a case not covered by the previous lemmas, so that P consists of two 
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non-trivial disjoint pieces, one of which is an n-cycle with n 2 4 ;  we identify such a 
decomposition thus: 

P =  (12 . .  . n)Q.  

Now choose a sequence T ~ ,  T ~ ,  . . . , T= in the same way as was done for an n-cycle in 
lemmas 1 and 2. Then P, = P, and we may apply (2.5) where for this T sequence the Q 
part of P is left unaffected. Hence T / P / - ~  and P/-IT, involve a disjoint factor Q and a 
second factor moving fewer than n indices. Then the K values for T / P , - ~  and P , - l ~ ,  are 
less than M, and the (7,P1-1) and ( P I - l ~ J )  are reducible via the induction hypothesis. The 
~ l ( T I P ~ - l + P I - l ~ , )  give rise to sums of the same kinds of permutations which arise in 
lemmas 1 and 2 at a similar stage. Thus ( P )  is reducible. 

We record the explicit formulae 

(1  234) + (1 432) = (1 2)(34) - (1 3)(24) + (14)(23) + (24) + (1 3) - 1 

(12345) + (1 5432) 

= (12)(34)+(12)(35)+(12)(45)+(13)(45)+(14)(23)+(15)(23) 

+ (15)(24)+(15)(34)+(23)(45)+(25)(34)-(13)(24)-i13)(25) 

- (14)(25) - (14)(35) - (24)(35) - (12) - (23) - (34) 

-(45) - (15) +(13)+ (14)+ (24)+ (25) +(35) -3. (3.1) 

Higher-order formulae, for P E  ,YN, n 2 6 can be obtained straightforwardly, albeit 
tediously, from the proofs leading to theorem 1. 

Our final theorem is as follows. 

Theorem 2. The real space spanned by the (P) ,  P E  sPN has .aN as a basis so long as 
N < 7 ;  for N 3 8 .aN is overcomplete. 

Proof. We let e:] denote a real matrix basis element of the group algebra L ~ N ,  where 
irreducible representations occurring on the spin space y N  are labelled by two-rowed 
Young diagrams 

[ a ]  = [3N + s, fhr - SI (3.2) 

with S being the spin of the irreducible representation. Now 

with rkl identifying the s, r element of the [ a ]  irreducible representation of dimension 

N !  (2s + 1) [el - 
- (fhr + s + 1) ! (4N - S )  ! 

Then a basis for the real space spanned by the (P) ,  P E  sP,, is clearly 

( e ? ] )  = f ( e $ ' + e k I )  1 G r G s sf"], [ a ]  ranging 

(presuming the irreducible representations are real). Now this space has dimension. 

1 f f" '( f["" 1). 
s 

(3.3) 
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But the number of elements in the set .ahi, which by theorem 1 spans this space, is 

c E(,) (3.4) 
S 

where n(,) is the number of elements in the Sth involutary conjugacy class, specified by 
the partition 

( a )  = ( 2 + S ,  1 2 s )  (3.5) 

with S ranging over the same values as the overall spin. Here 

N! 
n(a)  = (& - fJ) 2 & N - S  

and the remarkable identity 

n(,) =4fa1( f r a J+  1) (3.6) 

is readily checked to hold for the corresponding ( a )  and [ a ]  of (3.2) and (3.5) with 
N s 7 .  F o r N = 8  

n(e) c : f q f [ * ’ +  1) 

with the inequality holding for a couple of values of S. Hence (3.3) and (3.4) are 
identical for N S 7 while (3.4) exceeds (3.3) for N 3 8, and the theorem is established. 
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